Properties of Composite Materials

نویسندگان

  • Ana Caroline Silva Gama
  • André Guaraci de Vito Moraes
  • Lilyan Cardoso
  • José Bauer
چکیده

strength, flexural modulus, and contraction stress of one orthodontic composite and two flowable composites. Orthodontic brackets were bonded to 45 human maxillary premolars with the composites Transbond XT, Filtek Z-350 flow and Opallis flow and tested for shear bond strength. For measurement of flexural strength and flexural modulus, specimens were fabricated and tested under flexion. For the contraction stress test, cylindrical specimens were tested and an extensometer determined the height of the specimens. The data were subjected to one-way ANOVA and Tukey’s test (a=0.05). The shear bond strength values were significantly lower (p<0.05) for the flowable composites compared with the orthodontic composite. For the flexural strength, no statistically significant difference was found among the composites (p>0.05) while the flexural modulus was significantly higher (p<0.05) for Transbond XT than for Filtek Z-350 flow and Opallis flow. The orthodontic composite presented significantly lower contraction stress values than the flowable composites (p<0.05). The light-activated orthodontic composite material presented higher flexural modulus and shear bond strength and lower contraction stress than both flowable composites. Properties of Composite Materials U s e d f o r B r a c k e t B o n d i n g

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of the Physical Properties of Composite Packaging Materials on Keeping Quality of Smoked Catfish

Six different composite packaging materials were tested with the trades’ practice of polythene bags in storing smoked catfish for a period of six months. The thickness of the packaging materials ranges from 0.23 to 046 mm with water and oil absorption rates of the packaging materials varies from 0.23 to 10.00 and 0.28 to 10.857 glcm2/mm respectively. The impact resistance weight also varies fro...

متن کامل

Effect of Particle Volume Fraction on the Tensile Properties of Composite Al6061/SiC Materials by Hot Extrusion

In the present study the effect of phase volume fraction on the reinforcement of microstructure and tensile properties of composite extrusion process Al6061/SiC has been studied. For this purpose, the base alloy Al6061 using pure aluminum ingots, silicon, of Al-50% Mg, Al-10% Cr and a thin copper rod was prepared. Next, the composite Al6061/5% SiC, Al6061/10% SiC, Al6061/15% SiC and Al6061/20% ...

متن کامل

Role of Intensive Milling on Microstructural and Physical Properties of Cu80Fe20/10CNT Nano-Composite

Carbon nano-tube (CNT) reinforced metal matrix nano-composites have attracted a great deal of attention in recent years due to the outstanding physical and mechanical properties of CNTs. However, utilizing CNT as reinforcement for alloy matrixes has not been studies systematically and is still a challenging issue. In the present study, Cu80Fe20/10CNT nanocomposite was synthesized by mechanical ...

متن کامل

Mechanical properties of hot-pressed Al-4.5 wt. % Cu/WC composite

In this study, the elemental powders of aluminum and copper were initially subjected to mechanical alloying using an attrition ball mill under argon atmosphere to produce an Al-4.5 wt% Cu powder alloy. The WC nanoparticles were then added to the powder alloy and milled in a planetary ball mill to explore the role of the WC nanoparticles on the mechanical properties of the fabricated composite p...

متن کامل

Evaluation of Mechanical and Tribological Properties of Glass/Carbon Fiber Reinforced Polymer Hybrid Composite

Polymer matrix composites used in different industrial applications due to their enhanced mechanical properties and lightweight. However, these materials are subjected to friction and wear situations in some industrial and automobile applications. Therefore, there is a need to investigate the wear properties of polymer matrix composite materials. This article emphasizes the dry abrasive wear be...

متن کامل

The Structural and Mechanical Properties of Al-2.5%wt. B4C Met-al Matrix Nano-composite Fabricated by the Mechanical Alloying

In this study, aluminum (Al) matrix reinforced with micro-particles (30 µm) and nano-particles (50 nm) boron carbide (B4C) were used to prepare Al-2.5%wt., B4C nano-composite and micro-composite, respectively, using mechanical alloying method. The mixed powders were mechanically milled at 5, 10, 15 and 20 hrs. The XRD results indicated that the crystallite sizes of both the micro-composite and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013